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SUMMARY 

By the use of the parabolic coordinate a general formula is derived 

for ionization of the hydrogen atom by electron collision when the atom 

is in  any given initial state. Using this formula the total ionization c ros s  

section and the ionization c ros s  section per unit energy range of the 

ejected electrons fo r  all  substates of the hydrogen atom belonging to the 

principzl quantum numbers n = 1, 2, 3, 4, 5 a r e  tabulated. In addition 

the ionization c ros s  section of one substate f rom each of the principal 

quantum numbers n = 6 ,  7, 8 ,  9, 10 a r e  tabulated. These tables cover 

the range of energies of interest  in the plasma calculations. The approx- 

imation used is the Born approximation in  which the bombarding electron 

before and after collision is described by a plane wave, 

electron by a Coulomb wave function. Comparison with 

the ground state of the atom is given. 

and the ejected 

experiment for, 

.. 
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I. INTRODUCTION 

& 

.' 

Apart f rom purely theoretical interest, ionization is one of the main 

atomic processes in the stellar atmosphere. 

in gas discharges and in plasma. Of the two competing forms of ioniza- 

tion, photoionization and electron impact ionization, the photoionization 

c r o s s  section of any excited state of hydrogen is known with good ac-  

curacy; this, however, is not true of the electron impact ionization. It 

i s  then desirable to know the electron impact ionization when atoms a r e  

in highly excited states. 

urement of the ionization c ross  section of excited states, the cor res -  

ponding calculation becomes more important. 

This process occurs also 

Because of practical difficulties in  the meas-  

We review briefly the developments of the theoretical and experi- 

mental  works on this particular form of ionization. 

of the ionization c ros s  section with the atom in any initial state has 

been calculated by J. J. Thomsonl (1912). Massey and Mohr2 (1933) 

have calculated, within the Born approximation, the ground state 

ionization of the hydrogen atom. 

technique, formulated the ionization from substates of the f i r s t  excited 

state without giving any numerical results for the case of hydrogen. 

B. Yavorsky4 (1945) has given the ionization of all S states of hydrogen 

in a general way, in the form of a triple s u m  and triple integrations. 

The results for  2s and 3s states a re  shown in this paper graphically. 

Mandls (1952), rederiving the equations of Burhop, has given the resul ts  

of ionization f rom the 2P, M = *l states, again in graphical form. Later 

The classical  value 

Burhop3 (1940), extending the same 
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on Swan6 (1955), taking the equations of Burhop, has car r ied  out the 

numerical integrations which a r e  tabulated for  the 2S, 2P, M = 0, A 1  

states.  Aside from a factor of 2,  i t  will be shown la te r  that his resul ts  

seem not too accurate. 

Outside of the Born approximation, Geltman7 (1956) has considered 

the effect of the Coulomb field of the nucleus on the incident electron, 

an effect which i s  neglected in the Born approximation. 

obviously important at the threshold of ionization. He finds a law in 

which the cross  section near threshold i s  proportional to  the excess 

energy of the ionizing electron. 

This effect is 

At this time the first measurement of the ionization of hydrogen 

became available. Fite and Brackmanns (1 958) achieved this measure  - 

ment and, without much surpr ise ,  showed that the measurement agrees  

with the Born approximation beyond 100 ev. This measurement was 

followed by those of Boyd and Boksenbergy (1959), and Rothe et  a1.l' 

(1962).  

The other theoretical works of interest  include the inclusion of 

exchange in  ionization by Peterkopll 

pulse approximation by Akerib and Borowitz'* 

close coupling approximation by Taylor and Burke '3 

threshold law fo r  ionizing collisions by Rudge and Seaton l4 (1964). 

(1961), the ionization by the im- 

(1961), the ionizationby 

(1963), and the 

Returning to the Born approximation, this approximation consists 

in representing the ionizing electron in  the quantum mechanical calcu- 

lations by a plane wave, the bound electron by a hydrogenic wave 

function, and the ejected electron by a Coulomb wave function. Physically, 
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this is to say that, when the ionization takes place, the ionizing elec- 

t ron  is f a r  from the nucleus, so that only one electron is in the field of 

the nucleus. The approximation also consists of the exclusion of two 

less important effects: the exchange of the two electrons, and the effect 

of the polarization of the atom on the incident electron. 

Application of the hydrogenic wave function in  parabolic coordinates 

in the expression for  the ionization amplitude facilitates i t s  evaluation. 

This is because the final state in this expression, which is the eigen 

function of the ejected electron, is  easily expressed in  parabolic co- 

ordinates. In this paper generating function in  parabolic coordinates 

is used to  express  in  closed form the ionization amplitude involving 

an a rb i t ra ry  initial state. 

With the nucleus fixed, the total ionization c ros s  section involves 

twelve integrals: six integrals over the spatial coordinates of the two 

electrons,  and the next s ix  over the momentum coordinates of the two 

electrons. 

energy eliminates one integral.15 

nine are car r ied  out analytically, and two integrations -integrations 

with respect to  the magnitudes of the momentum transfer  of the incident 

electron, and the momentum of the ejected electron-are car r ied  out 

numerically by a computer. 

For  a given incident electron energy, the conservation of 

Of the remaining eleven integrations, 

In the calculation that follows the c ros s  section for  a given n and 

a particular bound electron orbital angular momentum I is not available 

anymore, although this can be obtained by a unitary transformation of 
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the ionization amplitude before the integration is  car r ied  out to  find 

the total cross  section. 
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II. FORMULATION 

Born Amplitude f o r  Ionization and Excitation 

Consider a system of an electron and a hydrogen atom in an a rb i -  

t r a r y  state. 

excitation of the atom into a different state, o r  i ts  ionization. 

represent the propagation vector of the electron before collision, and 

k, the same vector after collision; the equation for conservation of 

energy will be 

Collision of the electron with the atom may result  in  the 

Let k, 

where E, and E, a r e  the energies of the ioda ted  atom before and after 

collision, and E is the total energy of the system. The Born excitation 

o r  ionization amplitude can then be written16. 173 18 

In this equation 8 , ,  4, are the polar angles of k, with respect t o  k, as 

the z - a x i s ,  m and e are the electronic mass  and charge, Z the charge 

number of the nucleus, r1 and r2 the position vectors of the incident 

and the atomic electrons, t,bi (r2) and +f (r2 )  the initial and the final 

eigenfunctions of the atom, and r l  and rI2 the distances of the incident 

electron from the nucleus and the atomic electron, respectively. 

probability that an incident electron, after causing the transition 

The 
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specified by $i and # f ,  be scattered within a range of solid angles w1 

to w1 t dw, is given by 

where I ( @ , ,  6,) is  the differential c ross  section. 

introduce the momentum transfer  vector K through 

It is convenient to  

K = k , - k , .  (4) 

Squaring and taking the differential with respect to 8, of this equation 

gives 

dw, 
KdK = k o k l s i n 8 1 d ~ 1  = k , k ,  ; (5)  

the last  equality follows from the axial symmetry of the problem. 

equation ( 2 )  is  substituted in equation (3)  and note is taken of equation (5) '  

When 

the orthogonality of +!Ji and +!Jf, and the relation" 

47T 
- exp[i K - r 2 ]  , 
K 2  

d 3 r l  

we obtain 

877 dK 
I(K)dK = 2 2 I V ( W l 2  2 ' 

ko 

V(k) = lex. [ i  Kzl +!Ji (r)+: ( r )  d3 r . 
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In the above expression a. is the Bohr radius, and the direction of the 

polar axis in the integral for V(K) is alongK; while for  the deficition 

of f (Sl, 41) the polar axis was taken along Lo. 

The total c ross  section f o r  excitation is obtained by integrating the 

above expression over all possible values of K: 

where the limits of integration a r e  fixed by equation (4). 

ionization, in contrast to excitation, the ejected electron may occupy 

in the continuum any of the infinitely many energetically permissible 

states;  while in the case of excitation the bound electron occupies a 

single final state. 

tegrating over all final states in addition to  integration over K. If k is 

the propagation vector of the ejected electron with polar coordinates 

k, 8, , +k in a coordinate system whose z axis i s  along K ,  the ionization 

amplitude becomes a function of k also. 

In L e  case of 

The c ross  section for ionization is obtained by in- 

The c ross  section is then given 

by 
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when we have written 

cosek = x I 

Let n be the principal quantum number of the atom before ionization; 
l i2  k2 

2m in equation (1 ) gives substitution of E, = - ___ 2 '  E, =-  
Z' e 2  

2ao n 

Use of the Generating Functions 

To evaluate V, we have to  specify the initial and the final states. 

For the in i t ia l  state we take the hydrogen eigenfunction in parabolic 

coordinates ,I% 20 

(14) 
Z a - - ;; nl, n2, m = 0,1,2,3, . 

The arguments of these functions a r e  related to  the Cartesian and 

polar coordinates of the bound electron through 

J 

4 
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The quantum numbers n l ,  n 2 ,  m are  related to n by 

so that there a r e  three independent quantum numbers only, corresponding 

to the three degrees of freedom of the bound electron. n is the principal 

quantum number similar to spherical coordinates, while m is the absolute 

value of the magnetic quantum number defined in the latter coordinates. 

To f i x  the normalization constant Nn 

volume in parabolic coordinates. If only 4 of the three orthogonal co- 

ordinates t ,  q, 4 is varied, the corresponding line element, with the 

help of equation (15), may be written 

m ,  we first find the element of 
1 2  

L 

Similarly , 

The r efore, 

is found through an orthogonality and a recurrence formula for Nnln2m 

the associated Laguerre polynomials,zl 

zm e-'LSm ( ~ ) L ; + ~ ( z ) d z  = 6(n, n ' )  x [Wl3 ' (18) 
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Normalization of equation (14), with the help of the last three equations, 

gives 

1 .  m = O  

Equation (14) can be expressed a s  a l inear combination of the hy- 

drogenic eigenfunction in spherical  polar coordinates, and the two 

representations a r e  related through a unitary transformation. As an 

example, @loo and $ole a r e  the two zeroth order  eigenfunctions of the 

hydrogen atom in a weak external e lectr ic  field, used in the f i r s t  order  

Stark effect. 

The final state in  V should describe the ejected electron in the 

Coulomb field of the nucleus. 

is justified202 to write 

Let us  designate it by $(k, r); then it 

where L(T) is a function of the parabolic coordinate 77 only. Substitution 

of equation (22) in  the SchrGdinger equation f o r  $(k, r) gives 
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It can be verified, by direct differentiation, that a solution to the above 

differential equation is given by 

where J o  is the Bessel function of the zeroth order and N is the normali- 

zation constant whose value is given below and is found elsewhere23 : 

Equation (22) can now be written 

x JOm "- 'B Jo ( R )  du , 

where 

vz 
R = 2 [ i u I k r - k - r ) ]  , 

with the appropriate asymptotic form23 

#(k, r )  - eikr . 
I -  
I .  
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Having fixed the initial and the final state in the mat r ix  V, we 

proceed with its evaluation. By equation (1 5), 

kr - k r - - k [ r - x s i n B k c o s + k - y s i n 6 ' k s i n + k - z c o s 6 ' k ]  

then we can write 

R" = [ p 2  tu2 - 2,mcos  ( ~ $ - 4 ~ ) ]  1/ 2 , 

where 

'k 
Q = 2 ) / - i U k c o s  Tf i .  

Equation (8) can now be written 

a 
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We f i r s t  car ry  the integration with respect to  6. Aside f rom cos (4) the 

only t e r m  in the integrand of equation ( 3 1 )  which is a function of 4 is 

J, (R*). By the addition theorem for  the Bessel functions,2* 

n=O 

where E, is defined in ( Z l ) ,  we get 

J, (R*) cosmc$d+ = 2rr J, ( p )  J, ( a )  cosm4k . ( 3 3 )  

It is convenient to  introduce the function I m n1 n2 Ik KOk) by ( 

then, through equation (33),  

I '  The c ross  section, equation ( l o ) ,  can be expressed in t e r m s  of 

I (m n1 n2  I k K Ok)by integrating over $ k ,  changing now to  atomic units 
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by putting a. = 1, and suppressing i fo r  simplicity: 

Below I m n1 n2) i s  evaluated by means of the generating functions ( 
of the associated Laguerre polynomials. These are19 

( l - s ) " + l  

( 1  - tIm+' 

a ik iK 
q = -2 - t  2 9 

- 
p - 2  

(37)  I 
' 1  
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in equation (35), we see that 

A 

where 

U = Iu iae -udu  x I J, ( p )  exp [- ( p  + q )  - 

The last two integrals a r e  given by Watson25 in  the following form: 

Let z =e. Introducing 



- Po2 = u l  - - i k u  cos2 (43) 

we obtain 

When equations (44) a re  substituted in equation (40), po and uo a r e  

eliminated through equations (43), and the integration is car r ied  out 

with respect to u, we obtain 

- i k  s i n e k  . = (  2 ) r ( m  t 1 + ip) 

By definition of equations (42), 

(pQ) iP-1 

X m + 2 + i / 3  

i k P c o s 2  %] [FQ - ikQ s i n 2  2 - *k 
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Equation (39) ,  with some modification in  equation (46), can now be 

written 

"l"2 

- ( m +  

(47) 
Expansion In Te rms  of s and t 

Since I m n1 n,) is independent of s and t ,  we can regard it as the ( 
coefficients of expansion of the right-hand side of equation (47) in 

powers of s and t .  The expansion of the right-hand side is accomplished 

by a combination of the binomial and Taylor expansions. 

Let us  introduce a new complex variable a by 

a = K -  i a ,  a* = K + i a .  

In terms of the new variable (cf., equations (38, 42)), 

(48) 

i ( a t k ) - ( a * t k ) t  
2 x  1 - t  1 Q = -  i a * - k )  - ( a - k ) s  

P = - ? x (  1 - s  

(49) 
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It follows that 

* - (m+3)  
[( 1 - s )  = (--$) [(a* - k )  - (a  - k)s] -(m’3) 

J 

* - (m+3) 
[( 1 - t ) Q]-(m+3) = ($) [ ( a t k )  - ( a* + k )  t] 

j2’0 
(51) 

Next, we introduce 

‘k 
2 sin’ 7 

*k 
- 2 C O S ’  2 

- 
bo - a * t k  ’ 

a* - k  
a l  - a - k  

- -  

a t k  
a* t k  b, = 

then, i f  we set 
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through equations (49, 52) we can write 

(54) 

where on the right-hand side we have made a Taylor expansion, y ( 0 , O )  

representing the dl th  and the tZth deviratives of y(s, t )  with respect 

to s and t ,  evaluated at s = t = 0. It is convenient t o  introduce two 

variables u and v given by 

- 1 - s  - 1 -  t 
v - b o - *  a l - s  ' u -  

Then 

y(u, v)  = [lt k(u t v ) ] - ( ~ + ~ + ~ @  . 

It is also convenient to introduce 

az = a. ( l - a l )  , b, = b o ( l - b l )  , 

g = (a1-+ , h = ( b 1 - t ) - '  . 

Then, making note of the relations 

dv du 
ds - az 8' 9 dt b z h Z  , - =  - -  

(55) 

(57) 

(58) 
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it follows that 

where y' ( u ,  v )  is the v t h  derivative of y(u ,  v )  with respect to the 

arguments u or v .  

can write in general 

Inspection of the above equations shows that we 

YXO ( s ,  t )  = 2 c(v, 4 )  a; g4* yu ( u ,  v >  , 
u= 1 

with C ( v ,  4 )  some undetermined constants. The C ( v ,  4 )  a re  found 

differentiating equation (59)  with respect to  s : 

4 t l t u  yu 
y&t l ,o  ( S I  t )  = E  ~ ( v ,  4 +  1) a: g 

v= 1 

4 
YU = C [(.e+ v ) c ( v ,  4 )  a; g 4t l t u  

u= 1 

+ ~ ( v ,  4 )  a;+' g'+2+ yvtl]  . 

20 
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. 

Comparison of the coefficients of a: g .e +'+"y"shows that 

C ( v ,  .e+ 1) = ( . e + . ) C ( v ,  4 )  + C ( v -  1 , 4 )  . ( 6 0 )  

Equation (60) gives the required recursion formula for  C ( v ,  4 ) .  In- 

spection of the first few derivatives of y(s ,  t )  shows that C ( v ,  4 )  = 0 

when v = 0 o r  v >.er 
equation (60) allow all the values of C ( v ,  4 )  to be determined. The 

values of C ( v ,  4)  for the first few values of 4 a r e  given in Table I. 

This condition, the fact that C( 1, 1) = 1, and 

Let us now write 

By analogy we have similarly 

"2 =I  
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For  the combined derivative of y( s ,  t )  we then obtain 

dU1 04, ”1 4 1 + V l  - 41 

ul=l a U  
Y ( s ,  t >  = +,, 4,) a, g 

4 2  

= c C ( v l ,  4,) a ~ l ~ l + u l  x C ( v 2 ,  8,) b 2 h  42+v2 y Vlh’ 2 

ul=l  u 2 = l  

By introducing 

C ( 0 , O )  = 1 , 

and the fact that C(0, 4 )  = 0 for  4 # 0, the above equation may be 

written 

4 2  
41% ,.e,*, U l + V 2  

Y 
Y 4142 ( s ,  t) = c c C ( v , ,  4 , )  C ( V 2 ’  4,) a;1 b? g 

u = o  u2=o 1 

This equation is a l so  valid when 8, = 4, = 0 . By equation (56), 

- ( i p t m t l t v l t v 2 ) !  
Y ( u ,  v )  - ( ip  t m  t l ) !  

22 22 

4, 4, 

ul=l  u 2 = l  

By introducing 

C ( 0 , O )  = 1 , 

and the fact that C(0, 4 )  = 0 for  4 # 0, the above equation may be 

written 

This equation is a l so  valid when 8, = 4, = 0 . By equation (56), 

. 
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~~ ~ ~~~ 

Through this equation and equations (55, 58) we obtain 

u = o  v 2 = o  1 

The useful form of this equation i s  obtained when a o ,  a , ,  a , ,  bo , b, , b, 

a r e  eliminated through equations (57, 52), and by putting cos ek = x 

(cf., equation (11)). The result  is 

iB+m+2 $1 -"I x ( a * - k )  -<.e, - v 2  ) 
x ( a - a * )  u 1 + u 2  x [ ( a * - k )  ( a t k ) ]  x ( a - k )  

x ( a  + k )  -c4, -"I ) x (a* + k t 2 - v 2  x ( l - ~ ) ~ ' ( l  + x ) ~ ~  

-(m+,+u1 +u2 ) 
- (62) x [aa* +k2 -kx(a + a * ) ]  

This completes the expansion of equation (53). 
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Finally, fo r  the last s ,  t dependent term in equation (47), through 

equation (49) i t  follows that 

1 2 + Q Z s i n Z  2) - ( m + l ) P Q ( P + Q - i k )  
ek 

( l - ~ ) ~ ( l - t ) ~  

- 1 'k - 
- 4  COS' 2 [(a* - k )  - ( a - k )  s ] ' ( l  - t ) 2  

1 ek 
- 7 p k s i n 2 T [ ( a + k )  - ( a * + k ) t ] Z ( l - s ) 2  

1 
- 3 a ( m t 1 )  [ ( a * - k )  - ( a - k ) s ] [ ( a + k )  - ( a * + k ) t ] ( l - s t )  . 

where it i s  desirable to  find the coefficients Ap ~ . 
we introduce two angles and +Z such that 

To accomplish this, 
1 2  

24 



In this way w e  get 

1 'k 
- 7 pk sin2 7 ( a  + k)2  [I - e  

1 
- 7 a ( m +  1 )  ( a * - k )  (a  + k )  [l-e2i41s][l - e 2 i 4 2  t] ( 1 - s t )  

1 
4 a ( m t 1 )  ( a * - k ) ( a + k )  p1 +/"2 

- -  

p 1 = 0  p 2 = o  

1 

J 
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P 
By equating the coefficients of sP1 t ', we obtain 

2 i P242 sin2 21 cos2 7 i- ( a  f k ) 2  e 
1 2 i pldl *k 

A = - 7 pk(-)" +" (i) (li) [( a* - k ) 2  e 
p1 P2 

1 

- 
8(.b1 P29 "1 " 2 )  = [ I -  S(Pl! %)I [ 1 - * ( P 2 *  " 2 ) ]  . 

When x = cos 8, is introduced and we set  

- 
Ah P2 - BPl PL2 XCP1P2 ' 

we obtain, since pk = Z , 
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Returning to equation (47) and referring to equations (50, 51, 53, 

54, 63), we can write finally 

snl tn2  ~ ( m n ,  n2) 7r 
x ,w i p + m  x (+>" ( l - x Z ) m / Z  c (nl  + m ) ! ( n 2  + m ) !  = - 2 ( 4 ) m + 3 N  1n2m 

"1 "2 

I(mnl n2) is found by equating coefficients of equal powers of s and t 

on both sides of this equation, and substituting the values of y 

and Ap 

(0, 0) 

from equations (62, 67): 
1P 2 

.ll ( i p  + m ) !  -ik 
- - 5 (4)"'3 (nl + m  ) .  1 ( n2 +m)! NnlnZm (ip)!~ x ( r) (1 - x') - 

I (mn1n2)  

x [(a* - k )  (a + k)] ( m + : 2 + j 2 )  
j 14 lP l  

J 2 4 2  p2 

x ( k ) u 1 + Y 2  x (2ia)  v1 +'2 

Y1 = o  Y 2  = o  

- ( m + 2 + u  1 + ~ 2  ) 
x (s r1 X( a* a* - + k  f ' ( 1 - x ) ~ '  ( 1 t x ) ~ '  x [ aa* + k2 - kx (a + a* )] 9 

(71 )  
27 



where the summation over j '8, p1 , and j 82  p2 is subject to the 

conditions 

Let us designate the set of integers j 8 ,  v1 p1 j2 8* v 2  p2 by y ,  

(73) - 
Y - (j1~,v1P1 j 2 8 2 v 2 ~ 2 )  

and introduce the angle +3 through 

Taking note of ,8 = Z/k and' equations (48, 64), the I(mnl n2) 

an  arbitrary phase factor - reduces to 

- neglecting 

28 



- ( m + Z + v  l + ~ z )  
x [.a* t k2 - kx(a t a*)] (77) 

Substitution of equation (75)  in equation (36) and elimination of N 

through equation (20) give 
"1 "2m 

where 

2 

dx 

The integration over x can be carried out by ordinary methods. Let 

us call the integral with respect to x ,  a ( v '  ) ; then, through binomial 
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expan s i o m ,  

m 
+1  +1 

J(’YY’) = [ H(y)H*(y‘ )dx  [ ( 1 - x 2 )  ( 1 - ~ ~ + ~ ’  ( 1  + x ) v 2 + u i  

J - 1  J -  I 

where we have expressed 

The integral with respect to  x in equation (80) is evaluated in Appendix 

I and is designated by J ( M ,  g ) .  For  future ceference the key equations 

in ionization a r e  listed below. 

Summary of the Equations 

Suppose the initial state of the atom with a nucleus of charge Z 

be specified by nmnl n2 , the magnitude of the momentum of the ionizing 

electron before collision by ko , the magnitude of the momentum t r ans fe r  

3 0  



by K ,  and the magnitude of the momentum of the ejected electron 

by k; the total ionization cross  section is then given by 

' ' .  

where 

Inthis  equation y stands for  8 integers, 

which combine according to 
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The explicit forms of G ( y )  and A(y,  y ' )  a r e  

J ( M ,  g )  being given in Appendix I. 

a r e  
PlP  2 

The parameters a,  41 ,  42, 43,  a , C ( v ,  .e>, BPlP2 , and C 

defined in the text. 

W e  recognize q(nmnl n2  ik) a s  the ionization c ross  section per unit 

rydberg energy of the ejected electron. 

Symmetry Considerations 

Equation (31)  shows that, when 5 ,  T ;  K, - K ;  n l ,  n 2 ;  and s i n - 2 ,  cos -2 
'k 'k 

a r e  interchanged, V(k, K )  remains invariant. Since 5 and T a r e  the 

variables of integrations, the interchange of 5 and 77 does not change 

V(k, K )  in  any case. 

not change under the following interchanges 

By puttingcos 8 ,  = x , this means that V(k, K )  does 

-+ -t 

K 2 - K ,  n1 n2 , x + - x .  
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W e  consider the integral 

The integrand can be written as the sum of odd and even functions of x. 

The integral with respect t o  the odd function is zero. 

with respect to the even function does not change when x 

the above integral is invariant under the interchanges K 

Or,  by equation ( lo ) ,  the interchange of the quantum numbers nl andn2 

i s  equivalent to the change of sign of K in  the expression for the in- 

tegrand with respect to k and K of the c ros s  section. 

equation (78) this can be written 

The integral 

-+ 
-x. Then 

-K, nl + n2. 
-+ + 

Formally, through 

S(n2nl /kK) = S ( n l n 2 / k - K )  . 

A further symmetry exists with respect to k .  By equation (35), 

I(ml n2 - k-KO,) = I*(ml n21kKOk) . 

Through equations (75, 79) it a l s o  is t rue that 

S(nl n21 - k - K )  = S(nl n21kK) . 

Combining with the previous result ,  it follows that 

- 
S(n2 nl (k, K )  - S(nl  n;ik, - K )  = S(nl n 2 (  - k ,  K )  
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A case of particular interest  is the ionization with ze ro  momentum 

ejected electron, k = 0; this corresponds to the excitation of the 

hydrogen atom to the state n - m .  

section does not change with the interchange of n1 andn2 : 

Equation (S2) shows that this c ros s  

Multiplicity of States and the Total Cross Section 

Sincenl + n 2  = n - m - 1  , n1 can take the values 0, 1 ,  2, ..., n - m - 1 ;  

o r  n - m  values. 

combinations of n1 and n2  for  a given n and m is n - m . 
value of cross  section for a given n and m is therefore 

The same is t rue  of n2. Then the total number of 

The average 

For  a given n the total number of s ta tes  with different m is 2n - 1. 

The average c ros s  section fo r  a given n is therefore 

ern defined in equation (21). 

given n is 

Notice that the total number of states for  a 

as it should be. 
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111. RESULTS AND DISCUSSION 

We have calculated, using Eqs. (78, 7 9 ) ,  the ionization of all sub- 

levels of hydrogen belonging to the principal quantum numbers n = 1, 2, 

3, 4, 5. We also have computed the ionization of one sublevel for each of 

the principal quantum numbers n 6 ,  7, 8 ,  9, 10. Since the ionization 

c ros s  section of all sublevels of any principal quantum number is ap- 

proximately the same in parabolic coordinates the la t ter  calculation 

gives an indication of the ionization c ross  section of n = 6,  7, 8 ,  9, 10. 

Thus we have a t  our disposal the ionization c ros s  section of the first 10 

levels of the hydrogen. 

To tes t  the accuracy of our results we have compared them with 

those of the spherical coordinates. F o r  the ground state,  the wave 

function in  the two coordinates i s  the same. Table I compares the r e -  

sults in the two coordinates. The ionization c ros s  section in spherical 

coordinates was f i r s t  calculated by Massey and Mohr2. Here it has 

been recalculated. The agreement between the results of the two coor- 

dinates is excellent. 

The resul ts  of n = 2 levels, again in both coordinates, a r e  given 

in Table II. F o r  m = 1 the wave function in both coordinates is the 

same. 

wave function of hydrogen in parabolic coordinates is related to the 

wave function in spherical coordinates through 

The agreement is shown in this table and Fig.  1. F o r  m = 0 the 
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These a r e  incidently the wave functions used in the first order  Stark 

effect. Substitution of these a s  the initial wave functions in Eqs. (8, 10) 

shows that we must have 

(87) Q(2O 10) + Q(2001) Q(2s) + Q(2pO) , 

Q(nmnl nZ)  being the ionization c ross  section of the state specified by 

nmnl n z  . Table I1 shows that the above equation is numerically sat is-  

fied; this is further shown in F i g .  2.  

Originally the ionization of the 2s and the 2p, m = 0 states was for -  

mulated by Burhop3 and computed numerically by Swan6. Swan's resul ts  

a r e  larger  approximately by a factor of 2 due to being unduly multiplied 

by a factor of 2 and being obtained by a cruder method of numerical 

integration. 

of the ionization with zero velocity ejected electrons of the 2s  and the 

2p, m = 0 states find similar discrepancies. 

Boyd26 , and McCrea and McKirgan 27 in determination 

At the moment, aside from the Born approximation, the most im- 

portant calculation of ionization with applicability to higher states is the 

classical  calculation. J. J .  Thomsonl in  1912, following his model of 

atoms with stationary electrons,  considered the collision of a moving 
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electron with an electron a t  r e s t  caused by their mutual coulomb inter-  

action. When the energy imparted to the electron at r e s t  exceeds its 

bound energy, the ionization takes place. Since the imparted energy 

decreases  as the impact parameter increases ,  an integration with r e -  

spect to the impact parameter between zero and a fixed l imit  gives the 

ionization c ros s  section. The result  i s  

where Qi is the c ros s  section in units of T a t ,  E, the impact energy in  

rydberg, and n i s  the principal quantum number of the atom. The 

result  of this simple classical  calculation is in fair  agreement with 

experiment and the elaborate quantum mechanical Born calculation, 

although it gives a smaller  c ros s  section and the position of the maxi- 

mum c ross  section i s  displaced. A major improvement in  Thomson's 

calculation is to take the motion of the bound electron into account. 

This has been done by Gryzinski2*. Let us introduce a = (n2 E,)-I, 

then according to Gryzinski Eq. (88) should be replaced by 

where o-,, = 4.030777a: and 

It should be noticed that in both Eqs. (88, 89) the c ros s  section falls off 

asymptotically as Eo-' while in quantum mechanical Born calculation 

the corresponding asymptotic form is logE,/E, 29 . 
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F o r  comparison, in Fig.  3 the Born, c lass ical  and experimental 

curves a r e  drawn. It is seen that close to the threshold the experimental 

curve agrees better with the classical  but asymptotically it favors the 

quantum mechanical calculations. 

The ionization of the n = 3,  4, 5 levels a r e  given in  Tables 111, IV 

Table V I  gives the ionization of the sublevel with the greatest  

6 ,  7 ,  8, 9 ,  and 10. 

and V .  

magnetic quantum number for  each of the levels n 

Fig.  4 corresponds to the ionization of the n = 2 while Fig. 5 gives the 

ionization cross  sections of all sublevels of the n 3 .  Figs.  6 ,  7,  8 

give the ionization curves for the levels n = 3 ,  4, 5 .  The cross  section 

for each level is  in units of n4 T a t ,  which is the geometrical c ross  

section of the level concerned. Along each level ionization curve the 

classical  curve is  a lso drawn for comparison. Fig.  9 gives the ionization 

of one component of each of the levels n 6 ,  7 ,  b, 9 ,  10. I t  i s  interesting 

to note that with increasing n ,  the c ross  section does not increase a s  

rapidly a s  the fourth power of n .  

Table VI1 gives the partial  ionization c ros s  section, i .e . ,  ionization 

c ros s  section per unit rydberg energy of the ejected electron, for the 

five levels n = 1, 2 ,  3,  4, 5 .  Finally Figs .  10-14 give the corresponding 

curves for these c ross  sections. The maxima of the partial  c ross  

sections occur when the velocity of the ejected electron is half i t s  velocity 

before ejection. The reason for this i s  not understood yet. 

With regard to numerical integration, when the number of values of 

y given by Eq. (73) is  small ,  the closed form has been used while the inte- 

gra l  form has been more  convenient when the number of values of y i s  

large.  
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APPENDIX I 

Integration with Respect to  x 

~ 

Let us  set 

+1 

xM (A + Bx)-g dx , 
- 1  

M = 2 m l  + t + t' f h, t h, , g = 2 ( m t 2 )  + v1 t v 2  t vl' t v,' , 

A = K 2 + u 2 + k 2  , B = -2kK . 

Introducing X = A + Bx, we obtain 

A + B  2 (3 ( - A ) S  JA'" I,, s = o  A - B  

J ( M ,  g )  = B - ( M + l )  

1 
N [ ( A + B ) ~ - ( A - B ) ~ ]  , N # o 

A t S  
In A-B , N ' O ,  

M 

s = o  

N = M - S - g t l .  

When k-0 , an alternative fo rm can be found. Noticing that 

( A t B x ) - g  = A-g ( 1 t - FYg I A-g 2 ( g - l + s )  ( - B Y  
S , 

s = o  

M = 2 m l  + t + t' f h, t h, , g = 2 ( m t 2 )  + v1 t v 2  t vl'  t v2' , 

Introducing X = A t Bx, we obtain 

When k-0 , an alternative form can be found. Noticing that 

u 
s = o  
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we get 

4 5  

0 0  

0 0  

0 0  

0 0  

1 0  

20 

TABLE I 

1 

3 

0 

0 

0 

1 

12 

120 
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Table I. Cross sections in units of 7~ ai for the ionization of the 
hydrogen atom in n = 1 level by electron collision, calculated in the 
Born approximation. 
the spherical coordinates while Q(lOO0) is the same cross  section 
employing the parabolic coordinate. 

Q( 1s) is the calculated cross  section employing 

- 

- ~~ 

122.4 0.74243 0.74244 

166.6 0.59375 0.59367 

1217.6 0.48282 0.48283 

Impact 

r 275.4 0.39959 0.39959 

1.00 13.6 

19.6 

26.7 

27.2 

1.44 

0.0 0.0 

0.57555 0.57502 

1.0016 0.99797 

1.0168 

1.96 

2.00 

2.56 

3.24 

4.00 

6.25 

9.00 

12.25 

16.00 

20.25 

Energy 

I 34.8 I 1.1691 I 1.1691 

44.1 I 1,1931 I 1.1931 I 
54.4 I 1.1449 I 1.1449 I 
85.0 I 0.93696 1 0.93660 1 
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Table VI. Gross sections in  units of 7-r ai for the ionization of the 
hydrogen atom in n = 6,7,8,9,10 levels by electron collision, calculated 
in the Born approximation and employing the parabolic coordinates. 
Fo r  each level, the component with the greatest  magnetic quantum 
number is  computed. Since in parabolic coordinates all components of 
a given level have approximately equal values,  the following table gives 
an indication of the c ros s  section of the level considered. 



Table VII. Ionization cross sections of hydrogen in n = 1 , 2 , 3 , 4 , 5  
levels by electron collision per unit energy range of the ejected electron. 
k$ is the energy of the incident electron and k2 is the energy of the 
ejected electron, both in rydberg units. The elements of each matrix 
are the averaged partial cross  sections in units of rn ai/ryd. 

1/16 

0 

81.580 

99.479 

91.868 

70.321 

53.796 

27.835 

18.310 

a. n = l  

b. n = 2  

1 14 

25.550 

21.952 

16.729 

8.3166 

5.3338 

0 I 11256 I 1/64 
I I 

0.25 I 0 I 0 1 0 1::; 1 185.57 1176.71 1153.00 

181.29 173.99 154.36 

96.202 92.338 81.996 

7.29 26.044 24.907 21.888 13.858 I 3.9717 



Table VI1 (continued) 

I 

1501.0 1175.1 534.86 

976.72 761.47 346.41 60.976 

672.27 522.27 234.56 40.253 9.5063 

203.61 154.30 64.973 10.047 2.2718 0.7043 

0.11 I 0 

0.0987 

0.16 12241.0 

TEjxK * 
740.07 

4.00 I 226.90 

0.0625 I 0 

0.09 (12978 

0.125 (12418 

1:;: I 5948.9 

3655.4 -- 
0.04 I 0 

0.0625 149804 

15768 

9415.8 

1-00 16303.3 

c .  n = 3  

914 

0 1 0 1  I I I I 
2008.2 1436.2 

1962.4 1365.6 610.43 

d. n = 4  

1 1256 1 164 1 / 1 6  1 /4  9 / 1 6  

0 0 
~~ 

10597 5494.2 

10529 6758.3 

I 9337.0 1 6164.5 I 1688.2 1 
~- 

5061.3 3344.9 1048.1 101.79 

3106.2 2032.4 627.86 68.228 7.7489 
~ ~ 

2096.1 1358.9 407.37 42.138 7.9390 

e. n = 5  

11256 1 / 6 4  1 / 1 6  1 /4  9 / 1 6  

0 0 

37189 13924 

35829 18886 

24743 13604 2977.0 

I I 12181 I 6498.2 I 1414.6 I 105.37 I 
7087.4 3705.6 794.02 60.879 6.8241 

4711.1 2437.5 505.32 38.238 5.1182 
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